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Motivation

Motivating questions

What is the relationship between classical and quantum
computational power?

What are the computational benefits of various kinds of quantum
resources?
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Introduction

Restricted models of quantum computation and their
classical simulation complexities

A restricted model of quantum computation is a one that has
specified limited quantum ingredients.

Classical simulation complexity of a restricted model: how hard it is
to classically simulate the model.

Computational hardness is notoriously difficult to prove, so it is popular
to resort to only providing evidence of hardness.

Studying the classical simulation complexity of restricted models can
help us identify which ingredients are an essential ‘resource’ for
quantum computational power.

Example: Extended Clifford circuits, which straddle the boundary
between classical and quantum computational power.
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Introduction

Clifford circuits

The Pauli group is the set of operators of the form
P = ikP1 ⊗ . . .⊗ Pn, where k = 0, 1, 2, 3 and each Pi ∈ {1,X ,Y ,Z}
is a Pauli matrix.

The n-qubit Clifford group Cn is the normalizer of the Pauli group Pn
in the n-qubit unitary group Un, i.e. Cn = {U ∈ Un|UPnU† = Pn}.
Elements of the Clifford group are called Clifford operations.

Claim: An operator C is a Clifford operation iff it can be implemented
by a circuit consisting of the following gates (called the basic Clifford
gates):

Hadamard gate H = 1/
√

2(X + Z )
phase gate S = diag(1, i)
CNOT gate CXab = |0〉〈0|a ⊗ Ib + |1〉〈1|a ⊗ Xb

A Clifford circuit (or stabilizer circuit) is one that consists of the
basic Clifford gates and single-qubit intermediate measurement gates
in the computational basis.
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Introduction

Clifford circuits

Numerous applications in quantum error correction,
measurement-based quantum computing, etc.

Rich enough to encompass many ‘quantum’ features like quantum
teleportation and entanglement.
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Introduction

Gottesman-Knill Theorem

Theorem (Gottesman-Knill)

Clifford circuits can be efficiently simulated on a classical computer.

is known to be true only in a suitably restricted setting. It depends on

notion of efficient classical simulation
ingredients of the Clifford circuit

Circuits with different ingredients are called extended Clifford circuits.
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Introduction

Goals

Discuss extensions of Clifford circuits and clarify the different notions
of classical simulation of quantum computation

Determine which extended Clifford circuits are efficiently classically
simulable

Provide evidence that particular extended Clifford circuits are not
efficiently classically simulable (based on plausible complexity
assumptions).
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Extended Clifford circuits

Three types of ingredients of Clifford circuits

Clifford circuit
|ψin〉 Measure

...
...

1. Inputs: IN(BITS) vs IN(PROD)

IN(BITS): computational basis inputs, i.e. |ψin〉 = |x1, . . . , xn〉, where
xi ∈ {0, 1}.
IN(PROD): product state inputs: i.e. |ψin〉 = |α1〉 ⊗ . . .⊗ |αn〉, where
αi ∈ C2.
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Extended Clifford circuits

Three types of ingredients of Clifford circuits

Clifford circuit
|ψin〉 Measure

...
...

2. Intermediate measurements: ADAPTIVE vs NONADAPTIVE

ADAPTIVE: Input states transform as follows:

|ψ〉 → CK (x1, . . . , xK )MiK (x1,...,xK−1)(xK ) . . .

C2(x1, x2)Mi2(x1)(x2)C1(x1)Mi1(x1)C0|ψ〉

NONADAPTIVE: same as above, except that Ci ’s and ik ’s do not
depend on x1, . . . , xK .
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Extended Clifford circuits

Three types of ingredients of Clifford circuits

Clifford circuit
|ψin〉 Measure

...
...

3. Outputs: OUT(BITS) vs OUT(PROD)

OUT(BITS): computational basis measurements.

OUT(PROD): arbitrary single-qubit measurements.
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Extended Clifford circuits

Notions of classical simulation

Informal definitions:

Strong (called STR) simulation of a quantum circuit: a classical
algorithm that calculates the probabilities of any subset of outcomes
of the quantum circuit.

Weak (called WEAK) simulation of a quantum circuit: an classical
algorithm that samples from the same distribution as the quantum
circuit.

Strong-f (n) (called STR(f (n))) simulation of a quantum circuit: like
strong simulation, except that the size of the subset to be simulated
is equal to f (n).

Weak-f (n) (called WEAK(f (n))) simulation of a quantum circuit:
like weak simulation, except that the size of the subset to be
simulated is equal to f (n).
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Extended Clifford circuits

Notions of classical simulation

Let Cν be a set of Clifford circuits.
Let pIT (y) = probability that when the registers (indexed by the set I ) of
the quantum circuit T are measured, the outcomes y are observed.

Definition (strong simulation)

A STR-simulation of Cν is a deterministic classical algorithm with
Input: 〈T , I , y〉, where

T ∈ Cν is a Clifford circuit on n qubits.

I = {i1, . . . , i|I |} ⊆ [n]

y ∈ {0, 1}|I |

Output: pIT (y) (up to exponential precision)
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Extended Clifford circuits

Notions of classical simulation

Let Cν be a set of Clifford circuits.
Let pIT (y) = probability that when the registers (indexed by the set I ) of
the quantum circuit T are measured, the outcomes y are observed.

Definition (weak simulation)

A WEAK-simulation of Cν is a randomized classical algorithm with
Input: 〈T , I 〉, where

T ∈ Cν is a Clifford circuit on n qubits.

I = {i1, . . . , i|I |} ⊆ [n]

Output: y with probability pIT (y)
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Extended Clifford circuits

Notions of classical simulation
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Extended Clifford circuits

Relationships between notions of classical simulation

Restrict our attention to the cases where f (n) = 1 or n.

STR

STR(1)
WEAK =
WEAK(n)

STR(n)

WEAK(1)

Figure: A→ B means that an efficient A-simulation of a computational task
implies that there is an efficient B-simulation for the same task.
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
WEAK(1) WEAK(n) STR(1) STR(n) STR
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
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GK = Gottesman-Knill [Gottesman ’98]. P means efficiently classically simulable.
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits
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Extended Clifford circuits
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JV = Jozsa and Van den Nest [Jozsa and Van den Nest ’14]
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Extended Clifford circuits

Magic states

Clifford + T gate is universal for quantum computation.

The T gate can be simulated by the following gadget:

• S∣∣π/4
〉 x

where
∣∣π/4

〉
= 1

2 (|0〉+ e iπ/4|1〉).
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Weak Strong
WEAK(1) WEAK(n) STR(1) STR(n) STR

OUT
(BITS)

NON-
ADAPT

IN
(BITS)

P
(i)

P
(ii)

P
(iii)

P
(iv)

P
(JV4)

IN
(PROD)

P
(v)

PH
(JV7)

P
(JV1) (Thm 1)

#P
(JV6)

ADAPT

IN
(BITS)

P
(vi)

P
(JV5) (JV2) (Thm 2)

#P
(vii)

IN
(PROD)

QC
(JV3)

QC
(viii)

#P
(ix)

#P
(x)

#P
(xi)

OUT
(PROD)

NON-
ADAPT

IN
(BITS)

P
(xii)

PH
(Thm 3)

P
(xiii)

#P
(Thm 4)

#P
(xiv)

IN
(PROD)

P
(xv)

PH
(xvi)

P
(Thm 5)

#P
(xvii)

#P
(xviii)

ADAPT

IN
(BITS)

P
(Thm 6)

PH
(xix)

#P
(xx)

#P
(xxi)

#P
(xxii)

IN
(PROD)

QC
(xxiii)

QC
(xxiv)

#P
(xxv)

#P
(xxvi)

#P
(xxvii)

QC means universal for quantum computation
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PH means that if the problem is efficiently classical simulable, then the polynomial hierarchy collapses.
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#P means that the problem of classically simulating the circuits is a #P-hard problem.
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Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
WEAK(1) WEAK(n) STR(1) STR(n) STR

OUT
(BITS)

NON-
ADAPT

IN
(BITS)

P
(i)

P
(ii)

P
(iii)

P
(iv)

P
(JV4)

IN
(PROD)

P
(v)

PH
(JV7)

P
(JV1)

#P
(Thm 1)

#P
(JV6)

ADAPT

IN
(BITS)

P
(vi)

P
(JV5)

#P
(JV2)

#P
(Thm 2)

#P
(vii)

IN
(PROD)

QC
(JV3)

QC
(viii)

#P
(ix)

#P
(x)

#P
(xi)

OUT
(PROD)

NON-
ADAPT

IN
(BITS)

P
(xii)

PH
(Thm 3)

P
(xiii)

#P
(Thm 4)

#P
(xiv)

IN
(PROD)

P
(xv)

PH
(xvi)

P
(Thm 5)

#P
(xvii)

#P
(xviii)

ADAPT

IN
(BITS)

P
(Thm 6)

PH
(xix)

#P
(xx)

#P
(xxi)

#P
(xxii)

IN
(PROD)

QC
(xxiii)

QC
(xxiv)

#P
(xxv)

#P
(xxvi)

#P
(xxvii)

Dax Koh (MIT) January 2017 30 / 32



Extended Clifford circuits

Concluding remarks

Whether we can classically simulate extended Clifford circuits
efficiently depends delicately on the ingredients of the circuit

Seemingly ‘modest’ changes to the ingredients can lead to large
complexity changes

Several extensions can be proven to be hard to simulate, under
plausible complexity assumptions.

Future work: any further extensions? How about other notions of
simulation, like approximate simulation?
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