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Motivating questions

@ What is the relationship between classical and quantum
computational power?

@ What are the computational benefits of various kinds of quantum
resources?
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Introduction

Restricted models of quantum computation and their
classical simulation complexities

@ A restricted model of quantum computation is a one that has
specified limited quantum ingredients.

@ Classical simulation complexity of a restricted model: how hard it is
to classically simulate the model.

o Computational hardness is notoriously difficult to prove, so it is popular
to resort to only providing evidence of hardness.

@ Studying the classical simulation complexity of restricted models can
help us identify which ingredients are an essential ‘resource’ for
quantum computational power.

o Example: Extended Clifford circuits, which straddle the boundary
between classical and quantum computational power.
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Clifford circuits

@ The Pauli group is the set of operators of the form
P=iPy®...® P,, where k =0,1,2,3 and each P; € {1,X,Y,Z}
is a Pauli matrix.

@ The n-qubit Clifford group C,, is the normalizer of the Pauli group P,
in the n-qubit unitary group U, i.e. C, = {U € U,|UP,UT =P,}.
Elements of the Clifford group are called Clifford operations.

@ Claim: An operator C is a Clifford operation iff it can be implemented
by a circuit consisting of the following gates (called the basic Clifford
gates):

o Hadamard gate H = 1//2(X + 2)
o phase gate S = diag(1,/)
o CNOT gate CXap = [0)(0], @ I + |1)(1], © Xp

e A Clifford circuit (or stabilizer circuit) is one that consists of the
basic Clifford gates and single-qubit intermediate measurement gates
in the computational basis.
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Introduction

Clifford circuits

@ Numerous applications in quantum error correction,
measurement-based quantum computing, etc.

@ Rich enough to encompass many ‘quantum’ features like quantum
teleportation and entanglement.
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Introduction

Gottesman-Knill Theorem

Theorem (Gottesman-Knill)
Clifford circuits can be efficiently simulated on a classical computer. J
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Introduction

Gottesman-Knill Theorem

Theorem (Gottesman-Knill)
Clifford circuits can be efficiently simulated on a classical computer. J

@ is known to be true only in a suitably restricted setting. It depends on

e notion of efficient classical simulation
e ingredients of the Clifford circuit

@ Circuits with different ingredients are called extended Clifford circuits.
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Introduction

Goals

@ Discuss extensions of Clifford circuits and clarify the different notions
of classical simulation of quantum computation

@ Determine which extended Clifford circuits are efficiently classically
simulable

@ Provide evidence that particular extended Clifford circuits are not
efficiently classically simulable (based on plausible complexity
assumptions).
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Three types of ingredients of Clifford circuits

[in) — Clifford circuit | Measure
1. Inputs: IN(BITS) vs IN(PROD)
e IN(BITS): computational basis inputs, i.e. |¢in) = |x1,...,Xs), Where
x; € {0,1}.
o IN(PROD): product state inputs: i.e. |t)in) = |o1) ® ... ® |ap), where
o € (Cz.
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Three types of ingredients of Clifford circuits

[¥in) — Clifford circuit | Measure

2. Intermediate measurements: ADAPTIVE vs NONADAPTIVE
o ADAPTIVE: Input states transform as follows:
) = Ck(X1s s XK)Mig (i) (XKD - -
Cox1, x2) My (xy) (x2) Ca (31 ) M, (x1) Co[9)

o NONADAPTIVE: same as above, except that C;'s and ix's do not
depend on xi, ..., XK.
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Three types of ingredients of Clifford circuits

|¢in> ]

Clifford circuit

— Measure

3. Outputs: OUT(BITS) vs OUT(PROD)
e OUT(BITS): computational basis measurements.

e OUT(PROD): arbitrary single-qubit measurements.
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Extended Clifford circuits

Notions of classical simulation

Informal definitions:

@ Strong (called STR) simulation of a quantum circuit: a classical
algorithm that calculates the probabilities of any subset of outcomes
of the quantum circuit.

o Weak (called WEAK) simulation of a quantum circuit: an classical
algorithm that samples from the same distribution as the quantum
circuit.

@ Strong-f(n) (called STR(f(n))) simulation of a quantum circuit: like
strong simulation, except that the size of the subset to be simulated
is equal to f(n).

o Weak-f(n) (called WEAK(f(n))) simulation of a quantum circuit:

like weak simulation, except that the size of the subset to be
simulated is equal to f(n).
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Extended Clifford circuits

Notions of classical simulation

Let C, be a set of Clifford circuits.
Let p'-(y) = probability that when the registers (indexed by the set /) of
the quantum circuit T are measured, the outcomes y are observed.

Definition (strong simulation)

A STR-simulation of C, is a deterministic classical algorithm with
Input: (T,/,y), where

e T €, is a Clifford circuit on n qubits.
o [ ={i,....0y} CIn]
o yc {01}/l

Output: p’-(y) (up to exponential precision)
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Extended Clifford circuits

Notions of classical simulation

Let C, be a set of Clifford circuits.
Let p'-(y) = probability that when the registers (indexed by the set /) of
the quantum circuit T are measured, the outcomes y are observed.

Definition (strong-f(n) simulation)
A STR(f(n))-simulation of C, is a deterministic classical algorithm with
Input: (T,/,y), where
e T €(, is a Clifford circuit on n qubits.
o | ={i,...,ign} C [n] is of size f(n)
o yc{0,1}f(
Output: p’T(y) (up to exponential precision)
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Extended Clifford circuits

Notions of classical simulation

Let C, be a set of Clifford circuits.
Let pl-(y) = probability that when the registers (indexed by the set /) of
the quantum circuit T are measured, the outcomes y are observed.

Definition (weak simulation)

A WEAK-simulation of C, is a randomized classical algorithm with
Input: (T, /), where

@ T €C, is a Clifford circuit on n qubits.
o | = {Il,,l|/|} - [n]
Output: y with probability p’T(y)
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Extended Clifford circuits

Notions of classical simulation

Let C, be a set of Clifford circuits.
Let p!-(y) = probability that when the registers (indexed by the set /) of
the quantum circuit T are measured, the outcomes y are observed.

Definition (weak-f(n) simulation)
A WEAK(f(n))-simulation of C, is a randomized classical algorithm with
Input: (T,/), where

e T €, is a Clifford circuit on n qubits.

o | ={i,...,i¢n)} C [n] is of size f(n)

Output: y with probability p-(y).
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Extended Clifford circuits

Relationships between notions of classical simulation

Restrict our attention to the cases where f(n) =1 or n.

STR

VERIRN

WEAK =
WEAK(n) STR()  STR(n)

NS

WEAK(1)

Figure: A — B means that an efficient A-simulation of a computational task
implies that there is an efficient B-simulation for the same task.
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits
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Extended Clifford circuits

Classification of classical simulation complexities of

extended Clifford circuits

Weak

Strong
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GK = Gottesman-Knill [Gottesman '98]. P means efficiently classically simulable.
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Extended Clifford circuits

Classification of classical simulation complexities of

extended Clifford circuits
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Extended Clifford circuits

Classification of classical simulation complexities of

extended Clifford circuits

Weak

Strong
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JV = Jozsa and Van den Nest [Jozsa and Van den Nest '14]
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
WEAK(1) | WEAK(n) | STR(1) | STR(n) STR
IN P P P P [P]
NON- | (BITS) (i) (i1) (iii) (iv) (Jv4)
ADAPT IN P 2]
ouT (PROD)|| () (Jv1)
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JV = Jozsa and Van den Nest [Jozsa and Van den Nest '14]
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Magic states

o Clifford + T gate is universal for quantum computation.

@ The T gate can be simulated by the following gadget:

where !77/4> = 1(]0) + e'™/4(1)).
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
WEAK(1) | WEAK(n) | STR(1) | STR(n) STR
IN P P P P [P]
NON- | (BITS) (i) (i) (iii) (v) (Jva)
ADAPT IN P p
ouT (PROD) ) (Jv1)
(BITS) IN P
BIT vi
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W Tac
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ADAPT IN P
ouT (PROD) (xv) (Thm 5)
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QC means universal for quantum computation
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
WEAK(1) | WEAK(n) | STR(1) | STR(n) STR
IN P P P P [P]
NON- | (BITS) 0) (ii) (iii) (iv) (Jva)
ADAPT IN P p
ouT (PROD) (v) (V1)
(BITS) IN P
BIT vi
apapT | BT (vi) (JV5)
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ouT (PROD) (xv) (Thm 5)
(PROD) IN
ADAPT (BITS) || (Thm 6)
IN QC QC
(PROD) (xxiii) (xxiv)

QC means universal for quantum computation
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Extended Clifford circuits

Classification of classical simulation complexities of

extended Clifford circuits

Weak Strong
WEAK(1) | WEAK(n) || STR(1) | STR(n) STR
IN P P P P [P]
NON- | (BITS) (i) (ii) (iif) (iv) (Jva)
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PH means that if the problem is efficiently classical simulable, then the polynomial hierarchy collapses.
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Extended Clifford circuits

Classification of classical simulation complexities of

extended Clifford circuits

Weak Strong
WEAK(1) | WEAK(n) || STR(1) | STR(n) STR
IN P P P P [P]
NON- | (BITS) 0] (i) (iii) (iv) (v4)
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(PROD) (i) (xxiv)

PH means that if the problem is efficiently classical simulable, then the polynomial hierarchy collapses.
January 2017
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Extended Clifford circuits

Classification of classical simulation complexities of
extended Clifford circuits

Weak Strong
WEAK(1) | WEAK(n) STR(1) STR(n) STR
IN P P P P [P]
A%%|\|PT (BITS) (i) (i) (iii) (iv) (Jv4)
N P P #P
ouT (PROD) (v) (Iv7) (JV1) (Thm 1)
(BITS) IN ) EI 4P %P
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IN @ QC
(PROD) (Jv3) (viii),
IN P P #P
NON- | (BITS) (xif) (Thm 3) (xiii) ()
ADAPT N P PH
ouT (PROD) (xv) (xvi) (Thm 5)
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ADAPT (BlTS) (Thm 6) (xix)
IN QC QC
(PROD) (xxiii) (xxiv)
#P means that the problem of classically simulating the circuits is a #P-hard problem.
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Extended Clifford circuits

Classification of classical simulation

extended Clifford circuits

complexities of

Weak Strong

WEAK(1) | WEAK(n) | STR(1) | STR(n) STR

IN P P P P [P]
NON- | (BITS) (i) (i) (i) (iv) (Va)

ADAPT IN p p ‘ﬂ‘ 4P
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IN QC QC #P #P #P

(PROD) (xxiii) (xxiv) (xxv) (xxvi) (xxvii)

#P means that the problem of classically simulating the circuits is a #P-hard problem.
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Extended Clifford circuits

Classification of classical simulation complexities of

extended Clifford circuits

Weak Strong

WEAK(1) | WEAK(n) | STR(1) | STR(n) STR
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Extended Clifford circuits

Concluding remarks

@ Whether we can classically simulate extended Clifford circuits
efficiently depends delicately on the ingredients of the circuit

@ Seemingly ‘modest’ changes to the ingredients can lead to large
complexity changes

@ Several extensions can be proven to be hard to simulate, under
plausible complexity assumptions.

@ Future work: any further extensions? How about other notions of
simulation, like approximate simulation?
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