Quantum versus Classical Measures of Complexity on Classical Information

Lock Yue Chew, PhD Division of Physics and Applied Physics School of Physical & Mathematical Sciences

&

Complexity Institute Nanyang Technological University

Astronomical Scale

Mesoscopic Scale

What is Complexity?

• Complexity is related to "Pattern" and "Organization".

Nature inherently organizes; Pattern is the fabric of Life.

James P. Crutchfield

- There are two extreme forms of Pattern: generated by a Clock and a Coin Flip.
- The former encapsulates the notion of Determinism, while the latter Randomness.
- Complexity is said to lie between these extremes.

J. P. Crutchfield and K. Young, *Physical Review Letters* 63, 105 (1989).

Can Complexity be Measured?

- To measure Complexity means to measure a system's structural organization. How can that be done?
- Conventional Measures:
 - Difficulty in Description (in bits) Entropy; Kolmogorov-Chaitin Complexity; Fractal Dimension.
 - Difficulty in Creation (in time, energy etc.) Computational Complexity; Logical Depth; Thermodynamic Depth.
 - Degree of organization Mutual Information; Topological ϵ -machine; Sophistication.

S. Lloyd, "Measures of Complexity: a Non-Exhaustive List".

Topological **E**-Machine

- 1. Optimal Predictor of the System's Process
- 2. *Minimal* Representation Ockham's Razor
- 3. It is Unique.
- 4. It gives rise to a new measure of Complexity known as *Statistical Complexity* to account for the degree of organization.
- 5. The Statistical Complexity has an essential kind of *Representational Independence*.

J. P. Crutchfield, *Nature* **8**, 17 (2012).

Concept of **E**-Machine

Symbolic Sequences: $\dots S_{-2}S_{-1}S_0S_1 \dots$ Futures : $\vec{S}_t = S_tS_{t+1}S_{t+2} \dots$ Past : $\vec{S}_t = \dots S_{t-3}S_{t-2}S_{t-1}$

Partitioning the set \overleftarrow{S} of all histories into causal states S_i .

• Within each partition, we have

$$P\left(\vec{S} \mid \vec{s}\right) = P\left(\vec{S} \mid \vec{s}'\right) \tag{1}$$

where \overline{s} and $\overline{s'}$ are two different individual histories in the same partition.

• Equation (1) is related to subtree similarity discussed later.

J. P. Crutchfield and C. R. Shalizi, *Physical Review E* 59, 275 (1999).

E Machine - Preliminary

- In physical processes, measurements are taken as time evolution of the system.
- The time series is converted into a sequence of symbols *s*

 $= s_1, s_2, \ldots, s_i, \ldots$ at time interval τ .

- Measurement phase space M is segmented or partitioned into cells of size ε.
- Each cell can be assigned a label leading to a list of alphabets A = {0, 1, 2, ... k -1}.
- Then, each $s_i \in A$.

E-Machine – Reconstruction

Combination of both deterministic and random computational resources

But the Probabilistic Structure is transient.

E-Machine – Simplest Cases

All Head or All "1" Process

Purely Random Process

 $s = 1, 1, 1, 1, 1, 1, \dots$

Fair Coin Process

- These are the extreme cases of Complexity.
- They are structurally simple.
- We expect their Complexity Measure to be zero.

E-Machine:

Complexity from Deterministic Dynamics

- The Symbol Sequence is derived from the Logistic Map.
- The parameter *r* is set to the band merging regime r = 3.67859...
- For a finite sequence, a tree length *Tlen* and a machine length *Mlen* need to be defined.

3-level sub-tree of *n* contains all nodes that can be reached within 3 links

E-Machine: Complexity from Deterministic Dynamics

• The ϵ -machine captures the patterns of the process.

C. R. Shalizi, K. L. Shalizi and J. P. Crutchfield, arXiv preprint cs/0210025.

E-Machine: Causal State Splitting Reconstruction - The Even Process

Statistical Complexity and Metric Entropy

• Statistical Complexity is defined as

$$C_{\mu} = -\sum_{\{\sigma\}} p(\sigma) \log_2 p(\sigma)$$
 Bits

It serves to measure the computational resources required to reproduce a data stream.

• Metric Entropy is defined as

$$h = -\frac{1}{m} \sum_{\{s^m\}} p(s^m) \log_2 p(s^m) \qquad \text{Bits/Symbols}$$

It serves to measure the diversity of observed patterns in a data stream.

J. P. Crutchfield, Nature Physics 8, 17 (2012).

- Linear region in the periodic window
- Decreasing trend at chaotic region
- Phase transition, $H^* \approx 0.28$: "edge of chaos"

A novel idea to generate fractals with "tunable" dimension¹

Figure : Basic idea of the arc-fractal system.

- The parameters: α (angle), n (number of arcs) and ω (orientation of arcs)
- Three types of rule: single, multiple and random

¹ H. N. Huynh and L. Y. Chew, *Fractals*, **19** 141 (2011).

Different parameters yield different fractals¹

Classic fractals	α	п	ω
Koch	$\frac{2\pi}{3}$	2	(+1;+1)
Heighway	π	2	(-1;+1)
Lévy	π	2	(-1; -1)
Sierpiński	π	3	(+1; -1; +1)
Eisenstein*	π	3	(-1;+1;-1)

Table : The combinations of α , *n*, and ω that give the classic fractals.

*Eisenstein fraction is created by joining three pieces of crab fractals together.

¹ H. N. Huynh and L. Y. Chew, *Fractals*, **19** 141 (2011).

• Out-In-Out (Crab):

- Out-In (Heighway):
- In-Out-In (Arrowhead):

 Sequence -> each arc is given an index according to its angle of orientation

Out-In-Out rule, level 3 of construction: (7,3,11,7,11,3,11,7,3,11,3,7,11,7,3,7,11,3,11,7,3,11,3,7,3,11,7)

In base-3: (1,0,2,1,2,0,2,1,0,2,0,1,2,1,0,1,2,0,2,1,0,2,0,1,0,2,1)

• The fractals generated by the arc-fractal systems can be associated with symbolic sequences^{1,2}.

42828682864686828646424686468682

¹H. N. Huynh and L.Y. Chew, *Fractals* **19**, 141 (2011).

²H. N. Huynh, A. Pradana and L.Y. Chew, *PLoS ONE* **10**(2), e0117365 (2015)

Table : Results of arc-fractal sequences with 2 arc segments (Heighway and Lévy) and 3 arc segments (arrowhead and crab).¹

Fractal d	п	ω	number of	h	C_S	
			symbols [†]	(bit/symbol)	(bit)	
Lévy	2	2	(-1; -1)	4	0.389	9.80
Heighway	2	2	(-1;1)	4	0.359	9.27
Arrowhead	$\frac{\ln 3}{\ln 2}$	3	(1; -1; 1)	3	0.387	7.34
Crab	$\frac{\ln 3}{\ln 2}$	3	(-1; 1; -1)	3	0.387	7.34

H. N. Huynh, A. Pradana and L.Y. Chew, *PLoS ONE* 10(2), e0117365 (2015)

Complex Symbolic Sequence and Neurobehavior

The complex symbolic sequences can be employed as stimuli in neurobehavioural or human pattern recognisation experiments.¹

- Map each symbol to a corresponding physical state
- Whether and how the human brain can perceive or predict the states

What is the next symbol in the sequence

a. \clubsuit b. \diamondsuit c. \heartsuit d. \blacklozenge ? How confident are you?

Difficulty quantified by measure of complexity?

M. Gu, K. Wiesner, E. Rieper and V. Vedral, Nature Communications 3, 762 (2012)

Quantum Complexity

Quantum Causal State :

$$\left|S_{j}\right\rangle = \sum_{k=1}^{n} \sum_{r=0}^{1} \sqrt{T_{j,k}^{(r)}} \left|r\right\rangle \left|k\right\rangle \text{ for } j=1,2,\ldots,n$$

Quantum Complexity :

$$C_q = -\text{Tr}(\rho \log \rho)$$
 Bits

where the density matrix $\rho = \sum_{i} p_i |S_i\rangle \langle S_i|$ and p_i is the probability of the quantum causal state $|S_i\rangle$.

Note that
$$C_q \leq C_\mu$$
 where $C_\mu = -\sum_{\{\sigma\}} p(\sigma) \log_2 p(\sigma)$ Bits

R. Tan, D. R. Terno, J. Thompson, V. Vedral and M. Gu, European Physical Journal Plus 129(9), 1-10 (2014)

Quantum E-Machine -Change of Measurement Basis

General Qubit Measurement Basis:

$$|\alpha\rangle = a|0\rangle + b|1\rangle$$
$$|\beta\rangle = b^*|0\rangle - a^*|1\rangle$$

where $|\alpha\rangle$ and $|\beta\rangle$ are new orthogonal measurement basis such that:

$$ig|0
angle = a^* ig|lpha
angle + big|eta
angle$$

 $ig|1
angle = b^* ig|lpha
angle - aig|eta
angle$

Deterministic ε - Machine

Stochastic ϵ - Machine

Quantum E-Machine -Change of Measurement Basis

Stochastic ϵ - Machine

$$|S_1\rangle = (1 - q_0)|0\rangle|1\rangle + q_0|1\rangle|2\rangle$$
$$|S_2\rangle = q_1|0\rangle|1\rangle + (1 - q_1)|1\rangle|2\rangle$$

Quantum **E**-Machine -Change of Measurement Basis

$$|S_{1}\rangle = \{(1-q_{0})a^{*}|1\rangle + q_{0}b^{*}|2\rangle\}|\alpha\rangle + \{(1-q_{0})b|1\rangle - q_{0}a|2\rangle\}|\beta\rangle$$
$$|S_{2}\rangle = \{q_{1}a^{*}|1\rangle + (1-q_{1})b^{*}|2\rangle\}|\alpha\rangle + \{q_{1}b|1\rangle - (1-q_{1})a|2\rangle\}|\beta\rangle$$

 $|S_1\rangle$

If the quantum ε – machine is prepared in the quantum causal state and measurement yields , $|\alpha\rangle$ the quantum ε – machine now possesses the causal state:

$$(1-q_0)a^*|S_1\rangle + q_0b^*|S_2\rangle$$

which is a superposition of the quantum resource. Further measurements in the $|\alpha\rangle$ and $|\beta\rangle$ basis leads to further iterations within the above results due to the inherent entangling features in the quantum causal state structure.

Ideas to Proceed

Mandelbrot Set

- Complexity within Simplicity

Question:

Could there be infinite regress in terms of information processing within quantum ϵ – Machine?

Question:

Could classical ε – Machine acts as a mind-reading machine in the sense of Claude Shannon's? Would a quantum version do better?

Neil Huynh

Andri Pradana

Matthew Ho

Thank You