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What is Complexity?

• Complexity is related to “Pattern” and  “Organization”.

Nature inherently organizes;

Pattern is the fabric of Life.

James P. Crutchfield

• There are two extreme forms of Pattern: generated by a 

Clock and a Coin Flip.

• The former encapsulates the notion of Determinism, while the 

latter Randomness.

• Complexity is said to lie between these extremes.

J. P. Crutchfield and K. Young, Physical Review Letters 63, 105 (1989).



Can Complexity be Measured?

• To measure Complexity means to measure a system’s 

structural organization. How can that be done?

• Conventional Measures:

• Difficulty in Description (in bits) – Entropy; Kolmogorov-Chaitin

Complexity; Fractal Dimension.

• Difficulty in Creation (in time, energy etc.) – Computational Complexity; 

Logical Depth; Thermodynamic Depth.

• Degree of organization – Mutual Information; Topological ϵ-

machine; Sophistication. 

S. Lloyd, “Measures of Complexity: a Non-Exhaustive List”.



Topological Ɛ-Machine

1. Optimal Predictor of the System’s Process

2. Minimal Representation – Ockham’s Razor

3. It is Unique.

4. It gives rise to a new measure of Complexity known as 

Statistical Complexity to account for the degree of 

organization.

5. The Statistical Complexity has an essential kind of 

Representational Independence.

J. P. Crutchfield, Nature 8, 17 (2012).



Concept of Ɛ-Machine

• Within each partition, we have

• Equation (1) is related to sub-

tree similarity discussed later. 

J. P. Crutchfield and C. R. Shalizi, Physical Review E 59, 275 (1999).

Symbolic Sequences: ….. S-2S-1S0S1 …..

    )1('|| sSPsSP




Futures : 


21  tttt SSSS

Past :
123  tttt SSSS 



Partitioning the set 𝑺 of all histories into 

causal states 𝑆𝑖.

where  𝑠and 𝑠′ are two different 

individual histories in the same 

partition. 



• In physical processes, measurements are taken as time 

evolution of the system.

• The time series is converted into a sequence of symbols s

= s1, s2, . . . , si, . . . . at time interval τ.

ε

• Measurement phase space M is segmented or partitioned 

into cells of size ε.

• Each cell can be assigned a label leading to a list of 

alphabets A = {0, 1, 2, … k -1}.

• Then, each si ϵ A. 

Ɛ Machine - Preliminary



Ɛ-Machine – Reconstruction
S = 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, …..
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• From symbol sequence -> build a tree 

structure with nodes and links .

• The links are given symbols according to 

the symbol sequence with A = {0, 1}.

Period-3 sequence
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S = 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, …..

Ɛ-Machine – Reconstruction
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Probabilistic 

Structure

Based on Orbit 

Ensemble

Combination of both deterministic and random 

computational resources 

But the Probabilistic Structure 

is transient.
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Ɛ-Machine – Simplest Cases

All Head or All “1” Process

s = 1, 1, 1, 1, 1, 1, …..

Purely Random Process

Fair Coin Process

• These are the extreme cases of Complexity.

• They are structurally simple.

• We expect their Complexity Measure to be zero.

1 ( p = 1)

1 ( p = 1/2)

0 ( p = 1/2)



Ɛ-Machine: 

Complexity from Deterministic Dynamics

𝑇𝑛
3 3-level sub-tree of n contains all nodes 

that can be reached within 3 links

• The Symbol Sequence is derived from the Logistic Map.

• The parameter r is set to the band merging regime r = 

3.67859 … 

• For a finite sequence, a tree length Tlen and a machine length 

Mlen need to be defined. 



The Logistic Map

 Logistic equation : 𝑥𝑛+1 = 𝑟𝑥𝑛 1 − 𝑥𝑛

 Starts period-doubling; at 𝑟 = 3 : period-2

 Chaotic at 𝑟 = 3.569946…

 Partitioning : 𝑠𝑖 =  
0, 𝑥𝑖 < 0.5
1, 𝑥𝑖 ≥ 0.5



Construction of ε-machine:

Transitions

Sub-tree 
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Ɛ-Machine:

Complexity from Deterministic Dynamics



Transitions

Ɛ-Machine:

Complexity from Deterministic Dynamics

Transient State



s = 1,0,1,1,1,0,1,…

• The ε-machine captures the patterns of the process.

Ɛ-Machine:

Complexity from Deterministic Dynamics
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Ɛ-Machine: Causal State Splitting Reconstruction

C. R. Shalizi, K. L. Shalizi and J. P. Crutchfield, arXiv preprint cs/0210025.



Ɛ-Machine: 

Causal State Splitting Reconstruction

-The Even Process
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Statistical Complexity and Metric Entropy

• Statistical Complexity is defined as

It serves to measure the computational resources required to reproduce a 

data stream.  

• Metric Entropy is defined as

Bits/Symbols

It serves to measure the diversity of observed patterns in a data stream.  

J. P. Crutchfield, Nature Physics 8, 17 (2012).
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The Logistic Map

 Linear region in the periodic window

 Decreasing trend at chaotic region

 Phase transition, 𝐻∗ ≈ 0.28 : “edge of chaos”



The Arc-Fractal Systems



The Arc-Fractal Systems



 Out-Out (Levy):

 Out-In-Out (Crab):

 Out-In (Heighway):

 In-Out-In (Arrowhead):

The Arc-Fractal Systems



 Sequence -> each arc is given an index according to 
its angle of orientation

-> Sequence : 11,7,3

Out-In-Out rule, level 3 of construction:
7,3,11,7,11,3,11,7,3,11,3,7,11,7,3,7,11,3,11,7,3,11,3,7,3,11,7

In base-3:
1,0,2,1,2,0,2,1,0,2,0,1,2,1,0,1,2,0,2,1,0,2,0,1,0,2,1

The Arc-Fractal Systems



The Arc-Fractal Systems

• The fractals generated by the arc-fractal systems can be 

associated with symbolic sequences1,2.  

1H. N. Huynh and L. Y. Chew, Fractals 19, 141 (2011).
2H. N. Huynh, A. Pradana and L. Y. Chew, PLoS ONE 10(2), e0117365 (2015)



The Arc-Fractal Systems

H. N. Huynh, A. Pradana and L. Y. Chew, PLoS ONE 10(2), e0117365 (2015)



Complex Symbolic Sequence and Neuro-

behavior
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General Classical ε-Machine

Causal State of Quantum ε-

Machine

M. Gu, K. Wiesner, E. Rieper and V. Vedral, Nature Communications 3, 762 (2012)



Quantum Complexity
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Quantum Causal State :

Quantum Complexity :

where the density matrix ii

i

i SSp and ip is the

probability of the quantum causal state .iS

Note that  
CCq  where Bits 
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R. Tan, D. R. Terno, J. Thompson, V. Vedral and M. Gu, European Physical Journal Plus 129(9), 1-10 (2014)
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Quantum versus Classical Complexity

The Logistic Map



Ɛ-Machine at Point 1 

– Edge of Chaos

....569946.3R

480236.5C

376835.5qC



Ɛ-Machine at Point 2 

– Chaotic Region

715.3R 341681.3C 093695.3qC



Ɛ-Machine at Point 3 

– Chaotic Region

960.3R

364846.1C 906989.0qC



Quantum Ɛ-Machine

-Change of Measurement Basis
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Quantum Ɛ-Machine

-Change of Measurement Basis
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Quantum Ɛ-Machine

-Change of Measurement Basis
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Quantum Ɛ-Machine

-Change of Measurement Basis
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If the quantum ε – machine is prepared in the quantum causal state 1S

and measurement yields      ,  the quantum ε – machine now possesses the  

causal state:  
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which is a superposition of the quantum resource. Further measurements 

in the  and basis leads to further iterations within the above results

due to the inherent entangling features in the quantum causal state structure.



Ideas to Proceed

Mandelbrot Set

- Complexity within Simplicity

Question:

Could there be infinite regress in 

terms of information processing 

within quantum ε – Machine?

Question:

Could classical ε – Machine acts as a 

mind-reading machine in the sense of 

Claude Shannon’s? Would a quantum 

version do better?



Thank You

Neil Huynh Andri Pradana
Matthew Ho


