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Motivation



Real numbers are ubiquitous

We often want to simulate systems whose properties are
described by real numbers:
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Digital computers cannot
directly store real numbers
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Precision is memory-limited
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Precision and memory cost

There are two subtly distinct concepts:

Precision —the closeness of a number to some ‘true’
value — quantified by the number of divisions N = 2"
(statistical property of simulation)

Memory cost — the amount of information required
to store a value (physical property of simulator)

In classical information theory, these are so
fundamentally related that they are used almost
interchangeably (e.g. “32-bit precision”)

In quantum mechanics these two quantities can
diverge significantly!



Scenario



Scenario: cyclic random walks

Consider a bead on a ring:
Position ytattime t.

t
_ _ tti_ yt 1w y
Discrete time-steps. Y=y

Position at time t+1:
yt+:|. — yt + X

where x is randomly
chosen from some
(continuous) distribution X.



Scenario: cyclic random walks

+ P(X=x)
Motion characterised

by shift function X.

e

Path described by series of continuous random
variablesY®, Y1...Yt... obeying Y"1 =Yt + X (mod 1)
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yt+1= yt +X



Scenario: cyclic random walks
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Classical simulators

site 4 site 1

To simulate to precision n, the ring
is split into N=2" sjtes, {s}.

Shift function X approximated - B
as NxN stochastic matrix.

Simulation is effectively
a finite state machine:

Site 3 Site 2

Statistics of future positions
yt2 yt+2  depend on the
current site st.

This information must be stored
in the simulator’'s memory!




The cost of classical simulation

More divisions gives greater Site Semjmmmsite 1
statistical accuracy of simulation. _ D

| site 4 site 1
The state machine’s memory sitefy Site >
must accommodate more
possibilities. 1 | | §
For process with randomness, . :
. N site 6 site 3
in steady state each site is . :
equally likely. yotes itz
Entropy cost of simglating to site G| site 4
precision n=log,N is then:

Hclassical = (bits)



Quantum simulator



Quantum simulator

For a given precision n, each site is mapped onto a quantum state:

5> =X%1 /pji |J>
where p;; is the probability of transitioning from site i to j,
and | j > the “which site?” basis.
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Measurement of |S,> in the ‘which site?’ basis collapses state
onto one of the four possible sites with the correct probability.

Gu et al. Nature Communications (2012)



Quantum simulator

When supplied with appropriate state |S'>, the statistics forY?, and
the next state may be generated by the following circuit:

|St) |St+1)

Yt

|So?

where U is a controlled unitary that for each i rotates initial state
|S,> to state [S;> when the control bit is in state |i>.

Gu et al. Nature Communications (2012)



Quantum simulator

Internal memory p persists between time-steps:

Internal
memory p
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Steady-state of internal memory is p = 27212:1|5i > 5.

Memory requirement quantified by von Neumann entropy:
H=-Trplogp

Gu et al. Nature Communications (2012)



Example: Gaussian noise

Shift function X describes Gaussian noise with
standard deviation o:

1 I 2
P(X=x) = cj\/Eexp (— (xzog) )

4 P(X=x)
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Example: Gaussian noise

Entropy cost vs. precision:
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Garner et al. arXiv:1609.04408 (2016)



Example: Gaussian noise

Analytical bound for standard deviation 0 < 6 << 1:

Alll_r)rolo Hquantum = Tno (1 + 4\/50) log, o

— 0=0.01
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Origin of quantum advantage

As precision increases, the statistical future of neighbouring
sites s, s.,, becomes increasingly similar:

1+1
P(Yt+iyt+2 ISt =5;) =~ P(Yiriyt+2 | [St = s;44)
but never actually converge for any finite precision n.
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One may never be able to identify s. vs. s, simply by
looking at future statistics YT1Yt*2  —the process
exhibits unboundedly large crypticity.
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But, memory states s, and s;,, remain distinguishable! Hence,

I+1

increasing precision always increases classical memory cost.



Origin of quantum advantage

Increasing precision always increases classical memory cost.

As precision increases quantum states |S.> and [S;, >

increasingly overlap: <S|S;,,>— 1

Storing increasingly overlapping states adds a diminishing
contribution to the memory’s von Neumann entropy
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Ultimately, precision
can be increased with
no further quantum
memory cost.



Observer-dependent complexity

The classical memory cost of simulation corresponds to its
statistical complexity-.

Processes involving the stochastic dynamics of real numbers
could be of very high complexity.

An observer with quantum information processing power
could find such a process to be much simpler2.

Quantum simulators can simulate to arbitrarily high precision
at fixed finite memory cost:

1. Crutchfield & Young, PRL (1989)
2. Suen et al. arXiv:1511.05738 (2015); Aghamohammadi et al. arXiv:1602.08646 (2016)



Conclusions
& outlook



Conclusions

* Simulation of stochastic processes on classical digital computers
requires a trade-off between precision and memory required.

* Quantum simulators can simulate to arbitrarily high precision at
a finite memory cost.

* Quantum observers may find some processes simple, even if
they exhibit unboundedly high classical complexity.

Outlook

* These results probably generalize to any sort of simulation with
diffusive randomness. (For example: non-Markovian or non-
symmetric processes).

* This advantage may generalize to general Monte Carlo
simulations, which could be run on a quantum processor to
arbitrary precision, requiring a finite fixed memory cost.

Garner et al. arXiv:1609.04408
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